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Abstract Tight synchronization in parallel programs executed on mu]tiprogrammed multiproces-
mrs may result in catastrophic performance losses as a result of the absence of swapped out
processes. Our work introduces a programming methodology that utilizes computational syn-
chronization and avoids tight control flow synchronization in parallel programs. In this methodol-

• ogy, each phase of the computation is assigned a status that can be ready, blocked or completed,
and tasks in each computationalphase are selfschcduled to ensure computational progress by the
available executing processes. Results obtained indicate that this methodology avoids the catas-
trophic performance losses resulting from the swapping of processes in multiprogrammed mul-

, tiprocessors.
\

L Introduction Recent advances in hardware technologies and the advances in parallel
languages and algorithms are promising to make shared memory multiprocessors the future com-

ion machines. Currently, there are many shared memory multipmcessors available, ranging
supercompumrs to the minisuper and superminicomputers, and all have proven to be able to

deliver very high throughputs that satisfy time sharing and batch programs needs. It has also been
seen that these machines are capable of supplying speedup of single parallel programs when their _,
execution is implemented by a set of ¢ooperati_.g processes. However, most of these machines
nm multiprogrammed operating systems and tt us there is no certainty that processes of a paraLlel II
program will be executed concurrently on more than one hardware processor, g many instances,
multip grammgro in , which is a ppeyl"on of the operating, system, aimed towards the improvement _,
of the overaU system efficiency and throu;,,lput, interferes with parallel programs, and slowdowns
in the execution time of these programs occur. ,_

In this paper we will be discussing the effects of multiprogramming on the performance of

parallel programs, where tl_ performance of a parallel program is determined in terms of the wall 1
clock time speed up of executing the parallel program over the sequential version. We will show

effect by presenting the results of executing an example parallel program on three multipro- "

eessors; an Alliant FX/8, a 20 processor Encore Multimax and an 8 processor Scquent Balance
21000. These results will be given forsituations where the parallel program processes wcrc exe-
cuted concurrently on separate processors and for situat,ons where they were multiprogrammcd i
on a smaller set of CPU's. In a later section, we will also present a new programming

% This wodt was supported in pan by NASA Langley Research Center under NAG-l-640, and by the Office of Naval Research
under N00014-86-K-0204.
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methodology that wiii improve me performance ot paraLlelprograms and is suitable for multiprn-
grammed environments, i

Throughout this paperwe will assume the use of a r rallel language, where parallelism is at ,
the top of the programhierarchy, in particularwe will be using the Force[l]. The Force is a paral-
lel language that is currently being developed at the University of Colorado, Boulder, and is
currently impZementedon several machines. Among these an:Flex's, Cray's, Alliant's, Sequent's
and Encore's machines. In the Force and similar parallel programming _aradigms, such as IBM t

EPEX Fortran[2], and Butterfly Uniform System libray[3], the user writes a single program that
is to be executed by an arbitrarynumber of processes, where the number is not specified until run
time and stays fixed throughout the execution period. These processes are the parallel instru_on
streams that will participate in the execution of the parallel program. In the parallel programmer's
view, these streams are sapposed to be executed concurrently on separate CPU's during _e --xe-
cation of his parallel program. However, as a result of multiprogramm:.r._,coscheduling of these

processesmay not be possible and the performance of parallel programs may be severely
affected.

2. Example Parallel Program Consider the LU factorization of a matrix with partialpivoting as
implemented in the Linpack SGEFA subroutine[4]. The algorithm is composed of three phases
that an: repeated for all rows of the matrix to be factored. These phases must be completed in
orderfor each row, before they can start for the next one. The search for the pivot row is done in
the firstphase and the swapping of the pivot row and the currentrow is done in the second phase.
In the third phase, the actual Gaussian elimination computations are performed. Although, there
are other papersthat consider the possibility of overlapping computational phases[5], our aim in
this paper is to show the effects of multiprogramming on tightly synchronized and strictly
ordered phases.

Using _ Force, this algorithm was wril!en by Jordan[6], as a Force subroutine. This Force
subroutine starts with a barrier{8], which is a Force construct that is used to synchronize the

instruction streams. The barrier win let the force of processes executing a Force program wait ,
un_ they all execute the barrierstatemenL One process of the Force can then execute a sequen-
tim code section, if any, and the Force is released again. The barrierprovides a very clear and
simple way to mark the completion of a computational phase and the availability of all the
processes to start the next phase of the computation. The barrier in this algorithm initializes
shared variables before the factodzation process starts. The barrieris followed by the main loop
over the rows of the mau_x. In this loop the firstphase is done using a prescheduled Do loop[9],
followed by a critical section. The second phase consists of swapping the pivot row and the
current row if swapping is necessary. Obviously, this can not be started before the pivot row is
located, hence, a Force barrieris used to detect the completion of the first phase by detecting the L
arrival of all the processes that participated in finding the pivot. The third phase is that of per-
forming the actual row reductions. Again the third phase is separated from the second phase by a
barrierwhich will also =alculate the pivot clement required for Lheelimination. The Force subrou-

line which implements the SGEFA algorithm is shown in Table-i.

2.1 Performance of the LU example The results of executing the LU f_ctorization algorithm on ['_
an Encore's Multimax, Alliant's FX/8 and Scquent's Balance 21000 is shown in Figures (1,2,3), _,,
respectively. In these figures, the light bars show the results for the case where coschedulin_ of
processes on separate CPU's is guaran,,'ed and multiprogramming is avoided by making sure that
no other jobs are running on the machine whcn this program is run. Clearly, these r_sults ar_
excellent, and almost linear spcedups are obtained, ul) to the number of processors in these
machines. This algorithm, which performs and spccds up very well, is executed by all the
processes in a lock step fashion, and the coszhcdu_ing ol processes involved m the computauon
on separate processors is required to obtaia this performance. When th:rc are fewer processors
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dv,n._.a,_ uwJlp_ut_'_t:n,_e_ i)_scs wlu be muitiprogrammedon theavallaOleprocessors.
The performancedegradationdue to multiprogrammingcanbe seenfromthepreviousfigu_s |
when thenumberofprocessesexceededthenumberofCPU's.Although,theuserusu_Uy-cs-
trictsthenumberofprocesseshe usestobe lessorequaltothe numberofhardwareprocessors
available,inanenvironmentlikeUnix,hecan'tp_cventotherusersorsy_cm processesfromran-
Ringonthemachine,andthus,theseprocesseswilibemultipmgidmmedwiththepro_sscsofhis
parallelprogram.

Due to multiprogramming, whi:h is :he scheduling "" -_-., set of pr_:esses on a smalier set of
processors, some of the process-._ will _ .s',___-_dedin the middle of their execution. In this

environment, the performance of _ LU algorithm is shown by the dark bars in Figures(l,2,3).
In lhese figures, mulfip_nm_ning is mm_ifested by the deterioration in the performance of the
parallel algon.,!-.,_nand the considerable slow down flint has been incurred. Although this effect
varies for the machines that have been used, these variations are related to memory and cacheing
_es aSwell as to oIlw_rating_,Stera'S luning p,.zametcr# such as the lcn_ of the time qu.-.a-
turn and context switching overh_ on each machine. The locking me_sm also plays a very
important role and since it is based on spin locks on d_c_ mac._nes, processes waiting for locks
will be consuming their lime slices which results in a lot of we,steal CPU cycles. Thus, in tightly
synckmnized p_el pro_s, suspended process may preclude the advancement of other exe-
cuting processes and limit pro_ss in the overall program.

The light bars in fi_res (12,3), represent the execution time when the machines were not
lo_ed, and improvement in _e performance is obtained up to me number of physical processors
on these maclaincs. When nmning with more _an 8 processes on AUiant's and Sequen:'s
machines, the _fformance staa'tedto deteriorate _ by 9 l:_cesses the performance is slower
thanrunningwithoneprocess.On theEncore,runningwith24 vm_sscs isasslov,asrunning
withoneprocess.The darkbars,showtheperformanceof_ord_'sLU Factorizationalgoritl_m
on a loadedmachine.Inthiscase,thealgori__JTtshowsimprcvcrnentsup to5 processeson the ,_
Mtthimax and up to 3 processes on the Sequent znd and the Alliar,t, above these numbers the tx:r-
formance is deteriorating. E_denfly, a main cause of this degradation is sync_nization. CriticaJ ._

, sections are one of the causes since a suspended process _at has a lock will block o_ers waiting
for that lock,. However, baniers are the major cause as the barrier wou!_ force the executing
processes to wait for ea_ otl_r. In fact, _ execution time of a parallel code section that i_
cncI')sedbetweentwo barriers,or equivalentstreamsynchronizingconstructsina parallelpro-
gram,islimitedby thetimerequiredfortheslowestprocesstoenterthefirstba,ncr,execute

throughthecodesectionandexitthesecondbarrier.The barrierconstructisa sourceofdegrada-
tionnotonlyduetothetimespentwaitingforsuspendedprocesses,butalsoductothec:itictl
sections that areused in its implementation and '- .......'.,,u,,,. _ processes[8]. _,

3. A New ParallelProgrammingMethodologyInthissection,we arcgoing_ presenta nc_ '.,
programmingmethodologythatc_n bc usedtodesignand implementparaUclaIZc._iJunson i"
sharedmemory muhiprocessors.Algorithmswhicharetobcimplementedu_ingthismethodol-
ogyare assumed to be decomposable into phases that have to be completed in order. This metho-
dology will make no assumption at)out the number er _he speed of processes that will participate ;"
in the completion of a computation. The completion of computations and progress raade in d_cm I[
will be decided primarily by the status of the computation and will be less dcDeadent on 0_c
number of executing processes. The key issue in this methodology is the use of work barriers to '_
detect the completion ofprevious pha_s rather than the use of111,"tradiuonal sin:am barncrs. '_
The avoidance of stream banS,'erswill also limtt synchronization to the access of shared data, and !

will let the available proces,_,_.,,proceed as long as the,,' arc not blocked by locks acquired by [
suspended processes. _,

w
It

i
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ilW_JVuTJrd_lgr_dl fq_W _ P_J_ J'_ *-_M-_ v_ ur_ m _ v _ _- -- .... - ....

Given a computation that consists of a number of subcomputations that have to _ tom-
pleted in order, each subcomputation will referred___-_.,_a comvutational phase. In general, _,cora-

l putat_onal phase reVresent$, a computatinn......... aM __ ev_rh,,-,,,,-,-_,,-._.._..,,..,_,,v.31,'dCFd_ h_ia_ S_'TOmqd_ Llle
computation to insure its scheduling and completion regardless of the number of processes in a
parallel program that will execute or pass over iL Currently, computations which can be handled
by this co_tmct are assumed to consist of a group of parallel tasks which are represented by
indices that cover a range of integers, similar to those problems that can be implemented using
DOALL loops[9]. An optional critical code section can also be placed following the computation
and will be executed by every process that entered the computational phase and executed the
DOALL loop. The last section of a computaUonal phase is a strictly sequential section of code .IL
that is referredto as fi_ecompletion section of the computational phase. It is executed by one pro-
tess after the computation has been completed.

A computational phase has a status that can be blocked, ready, or completed. When the
status of a computational phase is fo_r_l to be blocked (not ready), processes that try to execme
th_ computational phase will wait until the status is set to unblocked (ready) by some other p_-
cess. When it is unblocked (ready), the construct w_ insure that no process can proceed with the
parallel program section following the computational phase before all the tasks in this subcompu-
ration have been scheduled. Processes can enter a computational pha e if it is unblocked, and
will execute in i: if its computation and its completion section have not been finished, otherwise,
• e computational phase will automatically become passive as its stares will be marked as com-
pleted. Processes that encounter a computational phase that has been completed, will skip it _d
continue with the statement or construct that follows the computational phase. The completion
section of the cunent phase and the status of the following phase together comprise a work bar-
tier if the completion section of the _rrcm phase contains a statemem that would mark the next
blocked phase as ready. This will insure the integrity of the computation without the need for
waiting for all processes at the end of each phase.

3.1 LU factorization and the New Methodology Utilizing the concept of a computational ohasc.
the LU factorization algorithm was rewritten as a subroutine in an extension version of the Force.
The algorithm starts by initializing shared memory using a structure referred to as the init con-
strucL This construct is characterized by blocking processes until the initialization body has been
executed by a single process which succeeded in obtaining a shared lock before any other process
could. Processes arriving after ff,e initialization code has been executed will skip the body of the
/nit construct and proceed with the code following the lnit. The structure of this construct is as
follows:

Each process will:
Atomically do:

- check if init done, 41
if done then skip the next two steps.

- do initialization.
- mark init done.

The use of this construct in imtialization will allow the section of code to _e executed before any
process can proceed and will not wait for all the processes to arrive. This construct will be reini- 41
tialized ;_tan lnit construct at the end of this subroutine so that other calls to this subroutine _11

execute corrcctly. The lint construct we are using for Gaussian elimination will do the following
initializations:

(1) Initialize the shared row marker _?ivot row) to 1, the first row.

'¢
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(2) Initializethestatusofthe pivotsearchcomputationalphasetoready.
(3) Reinitialize the init construct at the end of this Force subroutine so that the first process to

, exit this subroutine will execute it.

(4) Finally, the process executing this construct will wait for the matrix to be factored to
become ready.

The init construct, in this algorithm, is followed by an iterative loop which is to be executed in
parallel (n-l) times, where n is the number of rows in the matrix to be factored.

Process arriving at the beginning of the main algorithm loop, after passing by the init c. a-
struct, can start tbe LU factorization process because the matrix has been set up, the working row
has bee_ initialized, and no process will get into the previous lnit construct to change the initial-
ized shared inlbrmation. The main body loop consists of _ computational phases, the pivot
search phase, row swapping phase and the row reduction phase. This algorithm .. written such
that one pha_ will be ready at a time while the other phases are blocked. Initially all phases are
blocked except for the pivot search phase. A block of strictly sequential code terminating each
phase will b!ock the current pha_ and mark the following one as ready. At first, processes can
only execute the pivot search section which is described below.

Processes that succ_d in getting into the pivot search computational phase will be self
scbedul.ed to _arch for the pivot element, each process will search for the row with the maximum
pivot element among the rows it is assigned. Processes will then execute the critical section that
follows the DOALL loop, so that the global maximum pivot row is identified, and will proceed to
the completion se_,Jon of the phase. The body of this section is to be executed by the first pro-
ee_ that reaches it after the computation has been completed. Early as well as late arriving
processes will skip this section and proceed to the next phase. The bodv of this section consists

of blocking this phase (pivot search), setting up _e next phase (row swapping), doing an:, .,
" r_quired initializations and marking it as ready. When this is done, processes w_iting for the row :,

swapping computational phase will be let go, and every other phase would have been blocked.

The row swappingphaseis organized in a way similar to the pivot search phase. Its compu-
tational section consists of swapping elements of the pivot row if swapping is needed. Its com-
pletion sectionis againsimilartothecompletionsectionofthepivotsearchphaseandtheonly
differenceisthatthepm(:esswhichwillexecuteitwillsetuptherowreductionphaseandmake it
thenext readyphase.

row reduction phase is organized similarly. Its computational section consists of
DOAI.,L loop that will perform the reduction of rows. Again, the completion section preserves
thegeneralstructureseenintheprevioustwophases,withtheexceptionthattheproccsswhich
executes this section will check to see if the LU factorization has been completed. If it is, all l

phases are marked as completed a::d an exit flag is set so that processes will exit the subroutine, ".,_
otherwise, the row marker (pivot cour,ter) is incremented and the three phases are repeated until _'#
the LU factorization is complete. The outline of this parallel algonttun is as shown in Table II. "-'?.p

The performance of the implemented LU factorization algorithm, on Encore's Multimax, . .(
Alliant's _ and Sequent's Balance 8000, is shown in Figures (4,5,6), respectively. In these I
figures,theperformanceof the new algorithm is the same as Jordan's when multiprogramming is

not an issue. When it is, however, its effect is apparent, but the performance of the algorithm is _far superior to the performance of Jordan's algorithm. The light bars show the execution time ol
the new LU algorithm with no other program running e,a the machine other than this job. In this _,
case, on Alliant's andSequent's m._chines, running with up to 12 processes is almost S0% ,:lower
than running with the minimum execution time with 8 processes but is still less than 2/3 of the !
single process time. Similarly, on a 20 processor Encore running with 24 is less than 1/3 of the
single process time. The dark bars represent the execution time in an artificially loaded cnviron.
ment. In this case the minimum time was obtained _hen running with 7 processes on the

mm ..),
........ ^., ^..,: ,'.;.",: -:,",". "..-':-::-". ";¢. ',
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Multimax and running with 3 processes on Aliiant's and Sequent's machines. On all of these
machines ,_heexecu,don ,.Linei_ le.g_sensilivc to the n'Lh-i_beiof p_o_es exceeding the number of [:gXl
available processors. Thus, there is a better balance between individual parallel program peffor- "J

mance and overall system utilization. ,

4. Conclusions In this paper we presented a new progrmuning methodology that can reduce
inefficiencies that may result from running parallel programs on multiprogrammed shared
memory multiprocessors. On thesJ machines, the performance of parallel programs that are
tightly synchronized may b¢ sc,;erely affected and running with more than one process will result
in a real execution time that is slower than running with a single process. Our methodology
reduces this effect and depends on work completions as the basis for progress in parallel pro- i,.
grams. This methodology will take into account the possibility of swapping processes by avoid-
ing pre-schedulin_ of computations and avoiding the use of barriers that tightly synchaonize
instruction streams.
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"TABI..E.I Jordan'x LU Iractnri_m,n. Of n M_tri__" i_

Barrier
Initialize;

End b_.rrier ;

for k=l ...... ,n-I do
begin

DOAI_ i= k,.....n- 1

f_d I such lhal ABS( a_,_) • max f a_ );
Critical
if l > ipvt(k) then

save I in ipvt(k);

9arrier
End barrier;

lfl<>k
DOALL j=k,.., n-I

inlerchangea_ andat_;

Barrier

pie = -1.01 ai_;
End barrier;

DOALL if k+ ] ......n
begin

mi = -Oi_*piv
fcr j=k+ l.....n do

a_,i= a ii + mi * akj

end i;

Barrier
Relnitialize;

End barrier;
_nd k.

i
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T'ABI._-IITh_New LU Factoriza_ion Of a Matrix

i_. (g not done) _'_
Initialize; I["

LI : pl: Phast-I (Ready, Blocked, Completed) _:

DOAI_ i=l¢,.....n-I

find I such that _BS( a_,t ) • max ( a,_ );

Critical
ill > ipvffk) then

save I in ipvffk):

Check.out (if not da_e and work completed)
begin
Set Phase.1 bloci_ed
Setup Phase.2 o.nd mark it re.'uty

end:
End Phase. l

p2."Phase.2 (Ready, Bh_cked , Completed)
DOALL j=k...._.1

interchange 0_ and a,.;

Check-out (if not do_ and work completed)
be$in
Set Phase-2 blocked "m

piv = -1.0 / aa_;
$eEupPhase.3 and mark it ready "__'_

end; L'_,i,t

End Phase-2

p3 : Phase.3 (Ready, Blocked, C,_rapleted)
DOALL i=k ......n-I

mi = -a.a *ply
forj=k+l,...m do

aid = a id + rni * alL.l'_

Check.too (gnat do_ and work cocnpleted) ?:i
begin t '
Set Pha_-3 blocked "_._
if (Factorizatian Complete)

begin
Set Phase.l completed
Set Phase.2 completed _,_,'_
Set Phase.3 completed _,end

.be
Remilialize
Sttup Phase.1 and mark it ready

dmd; 8

End Phase.3 I

If _factorizatio_, not complete) goto L I
etwi.

y
"_,

N
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Figure(3) LU-Factoriz_on on Sequem's Balance-21000 using Barriers

Figure(4) LU-Factorization (_nEncore's Muhimax using _e new method
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Figure(5) LU.,Factorization on ADiant's FX/8 using the new method

Figure(6) LU-Factorization on Scqucn['s Balancc-21000 using the new method
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